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Abstract

The flow pattern and the heat transfer characteristics of confined swirling flows of viscous incompressible fluid in an

cylindrical container are numerically investigated in the axisymmetric flow regime under the Boussinesq assumption.

The flows are driven by rotating the top cover at a constant angular speed and stable temperature difference is imposed

between the top and bottom discs with the side walls thermally insulated. Steady state solutions are obtained for ranges

of governing parameters, the Reynolds number Re, the Richardson number Ri in 102 6Re6 3� 103 and 06Ri6 1:0 at

fixed values of the Prandtl number Pr ¼ 1:0 and the cylinder aspect ratio h ¼ 1:0. For the flows with small Ri,
meridional main circulation resides in the entire container convecting the heat from top to bottom disc. When Ri is
increased to Oð100Þ, horizontally layered structure appears with quiescent lower half and vertically linear distribution of

the temperature prevailing in much of the bulk. At intermediate values of Ri, i.e. Ri � Oð10�1Þ, flow separation occurs

on the bottom disc depending on the values of Re and Ri. The flow patterns are classified into several different types on

the ðRi;ReÞ plane. The average Nusselt number Nu which reflects the change of the flow structure, is a monotonically

decreasing function of Ri and an increasing function of Re. The torque coefficient CT is also computed and found to be a

mildly decreasing function of Ri for the parameters considered.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Swirling flows of viscous homogeneous fluid confined

in cylindrical geometries had been studied much in the

past [1–21]. Confined flows driven by constantly rotating

one of the top or bottom discs were, after the pioneering

works by Vogel [1], Pao [2], Bertel�a and Gori [3] and

Lugt and Haussling [4], systematically studied by Escu-

dier [5] by means of fluorescent dye visualization. His

experimental results disclosed that axisymmetric bubbles

are created on the axis of rotation in steady state flows

and the regions where up to three bubbles occur are

charted as flow state diagram on the governing para-

meter plane. Succeeding numerical investigations [6–12]

basically reconfirms the previous experimental findings.
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These axisymmetric bubbles are interpreted as bubble

type vortex breakdown [13–17] and in the present study,

the terminology bubble is used also to designate the

recirculating region created in the meridional plane. The

physical mechanism of the vortex breakdown was dis-

cussed by Brown and Lopez [8] and a concise expression

of criteria was proposed which rely on the production of

a negative azimuthal vorticity component [8,11]. The

stability of steady flows and the onset of oscillatory

instability was analyzed by using the linear stability

theory [18]. In more recent studies, rotating waves which

appear in high Reynolds number unsteady flows are

being investigated [19–21]. From dynamical systems

point of view, some authors have proceeded to show

interest in the mixing property of these breakdown

bubbles [9].

Lugt and Abboud [6] conducted a numerical study on

the influence of various parameters on the properties of
ed.
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Nomenclature

CT torque coefficient (Eq. (15))

g gravity acceleration

h cylinder aspect ratio (h ¼ H=R)
H height of cylindrical container

Nu local Nusselt number (Nu ¼ oT=ozjz¼0 or h)

Nu average Nusselt number (Nu ¼
1
p

R 1

0
NuðrÞ2prdr)

Pr Prandtl number (Pr ¼ m=j)
r radial coordinate

R radius of cylindrical container

Re Reynolds number (Re ¼ R2X=m)
Ri Richardson number (Ri ¼ ðaDTg=RX2Þh3)
T temperature

T0 standard temperature

ur velocity component in r-direction
uz velocity component in z-direction

uu velocity component in u-direction
z axial coordinate

Greek symbols

a thermal expansion coefficient

Dt discrete time interval

DT temperature difference between top and

bottom discs

j thermal diffusion coefficient

m kinematic viscosity coefficient

q density

u azimuthal coordinate

w meridional streamfunction (Eq. (1))

x vorticity component in u-direction (Eq. (2))

X constant angular speed of top rotating disc
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these separation bubbles. In their study, especially the

Prandtl, Rayleigh, and normally assumed to be negligi-

bly small Eckert numbers are changed under weakly

unstable thermal boundary conditions. Their series of

computations indicated that the occurrence of separa-

tion bubbles are very sensitive to the change of these

parameters. The thermal effects on vortex breakdown is

examined for fluid confined in a rotating concentric

spherical annulus by Arkadyev et al. [22]. In the geo-

metry of spherical gap container, depending on the rel-

ative strength of the imposed temperature difference and

rate of rotation, the flow field shows various types of

flow pattern: bubble type vortex breakdown, a vortex

ring, or the development of recirculating zone near the

outer sphere. The behavior of vortex breakdown bub-

bles under the influence of gravitationally stable and

unstable situation in the cylindrical geometry is treated

by Lee and Hyun [23]. In their numerical study, the

applicability of the argument of Brown and Lopez is

suggested which is based on the inviscid-kinematics, to

the descriptions of the stagnation bubble in a stratified

fluid. By comparing the relative magnitude of the terms

in azimuthal vorticity equation, dominance of conduc-

tion is displayed for the Prandtl number Pr � 1, when

the Richardson number Ri > 0, for large Pr, prevalence
of convection is shown. Swirling flows under a gravita-

tionally stable stratification in a cylinder is studied by

Kim and Hyun [24]. Local Nusselt number at top and

bottom discs is computed and its augmentation which is

controlled by convective heat transport is discussed in

their computation performed for cylinder with h ¼ 2:0.
In the configuration under consideration in the

present study, the temperature of the top disc is

maintained higher than that of the bottom disc. Rela-
tive strength of the buoyancy due to stable temperature

stratification and the convection of fluid driven by the

rotating top disc is represented either in terms of

the Grashof number Gr or the Richardson number

Ri ð¼ Gr � Re�2Þ. As stated by [23], in the absence of

the rotation of the disc, the fluid is at rest with

hydrostatic pressure and linear temperature distribution

developed in the vertical direction. Primary effect of the

increased Ri is therefore to simplify the flow and tem-

perature field toward the evident solution of the linear

equations except for thin Ekman layer formed on the

top boundary and Stewartson layer on the side wall.

However, for intermediate values of Ri, the flow pattern

is determined by the balance of centrifugal, Coriolis

and vertical buoyancy forces all participating in the

momentum equations. Predicting flow pattern is not an

obvious task. Associated behavior of heat transfer

characteristics is of interest which is represented by the

average Nusselt number Nu as both Re and Ri are

varied. The behavior of the torque coefficient CT as Ri
is increased might be also of applicational value to the

engineering problems. Present computation is moti-

vated by obtaining insight into the behavior of the flow

at moderate values of Ri, and information on Nu and

CT whose values were not reported in the previous

studies as Ri and Re encompass wide ranges of

parameter space. Numerical solutions are obtained for

the case of Pr ¼ Oð1Þ and a cylinder with same extent

of radial and vertical length, i.e. h ¼ 1:0. For cylinders

with h < 1:2, the phenomenon of vortex breakdown is

not relevant [5], however it will be shown in the present

study that meridional secondary flow reveals flow sep-

aration on the lower boundary as well as on the axis

depending on the values of Ri and Re.



Fig. 1. Schematic illustration of the cylindrical container and

boundary conditions.
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2. Numerical method

2.1. Governing equations

The governing equations are the continuity equation,

the momentum equations and the energy equation of the

incompressible fluid under the Boussinesq assumption.

In the present study, the axisymmetry of the flow is as-

sumed and the vorticity–streamfunction procedure is

utilized in the numerical computation. The meridional

streamfunction w defined as

ur ¼ � 1

r
ow
oz

; uz ¼
1

r
ow
or

ð1Þ

and the azimuthal component of the vorticity x given by

x � xu ¼ our
oz

� ouz
or

ð2Þ

satisfy the elliptic equation

1

r
o2w
oz2

þ o

or
1

r
ow
or

� �
¼ �x: ð3Þ

The vorticity transport equation

ox
ot

þ o

or
ðurxÞ þ

o

oz
ðuzxÞ �

1

r

ou2u
oz

¼ 1

Re
o

or
1

r
orx
or

� ��
þ o2x

oz2

�
� Ri

oT
or

; ð4Þ

the azimuthal momentum equation

ouu
ot

þ o

or
ðuruuÞ þ

o

oz
ðuzuuÞ �

2uruu
r

¼ 1

Re
o

or
1

r
oruu
or

� ��
þ o2uu

oz2

�
ð5Þ

and the energy equation

oT
ot

þ o

or
ðurT Þ þ

o

oz
ðuzT Þ �

urT
r

¼ 1

RePr
o

or
1

r
oT
or

� ��
þ o2T

oz2

�
ð6Þ

completes the system of equations. Above Eqs. (1)–(6)

are solved for w, x, uu and T . The second-order finite

difference schemes on non-uniform grid are used

throughout for the spatial discretization. No upwinding

schemes are utilized. As to the time-marching, the sec-

ond-order Adams–Bushforth scheme is used for the

convection terms and the Crank–Nicolson scheme is

used for the diffusion terms. Implicit equations are

solved by the approximate factorization method. The

Poisson equation for w and x is iteratively solved by the

conventional Red–Black–SOR method.

Reference scale for the length, time, velocity and

pressure are R, X�1, RX and qR2X2 respectively.

Dimensional temperature T � is non-dimensionalized as
ðT � � T0Þ=DT . After the non-dimensionalization, the

physical parameters which govern the fluid motion and

the temperature distribution are the rotational Reynolds

number

Re ¼ R2X
m

; ð7Þ

the Richardson number

Ri ¼ Gr
Re2

¼ aDTgH 3

m2
m2

R4X2
¼ aDTg

RX2
h3; ð8Þ

the Prandtl number

Pr ¼ m
j

ð9Þ

and the radius to height cylinder aspect ratio

h ¼ H
R
: ð10Þ
2.2. Boundary conditions and initial condition

The boundary conditions for the axisymmetric

swirling flows in terms of w, x, uu and T are (see Fig. 1),

on the axis

w ¼ 0; x ¼ 0; uu ¼ 0;
oT
or

¼ 0 ðr ¼ 0; 06 z6 hÞ;

ð11Þ

on the side wall

w¼ 0; x¼�o2w
or2

; uu ¼ 0;
oT
or

¼ 0 ðr ¼ 1;06 z6hÞ;

ð12Þ



2758 R. Iwatsu / International Journal of Heat and Mass Transfer 47 (2004) 2755–2767
on the bottom disc

w ¼ 0; x ¼ � 1

r
o2w
oz2

; uu ¼ 0; T ¼ �0:5

ðz ¼ 0; 06 r6 1Þ; ð13Þ

and on the rotating top disc

w ¼ 0; x ¼ � 1

r
o2w
oz2

; uu ¼ r; T ¼ 0:5

ðz ¼ h; 06 r6 1Þ: ð14Þ

The derivatives on the boundaries are evaluated by

the second-order one-sided finite difference scheme.

The initial condition for each run is the conductive

solution of the heat transfer equation: the fluid is at rest

and the temperature variation is vertically linear. The

computation is continued until convergence criteria of

ðwn � wn�1Þ=Dt6 5� 10�7 and ðPn � Pn�1Þ=Dt6 10�5 are

satisfied. In the above equations, P denotes the value of z
and r coordinate of stagnation points on the axis and

bottom, if there exists any. These values are calculated

by searching for the zeros of w on the axis and u on the

bottom disc respectively. The second criterion assures

that the convergence is complete and no oscillation is

observed in the dividing streamlines on the meridional

plane. Otherwise the computation is carried out up to

non-dimensional time of t ¼ 6000. Typical value of time

stepping increment Dt was 5 · 10�3, though as small

value as 5· 10�4 was necessary for some cases at low Re.
Prior to parametric computation, the grid-depen-

dence of the present numerical method is checked for

representative value of parameters. The result of this test

is shown in Table 1. The value of the average Nusselt

number is obtained by taking the average of Nu calcu-

lated at top and bottom discs. Numerical error in these

values, Nuðz ¼ 0Þ and Nuðz ¼ hÞ is at most 2% when

ðRe;RiÞ ¼ ð3� 103; 0Þ and in many cases, less than 0.8%.

According to Table 1, while the maximum value of the

streamfunction, the average Nusselt number and torque

coefficient differ 3%, 1% and 6% respectively between the

coarse and medium grid, differences between the med-

ium and fine grid are only 0.7% 0.5% and 8% respec-

tively. The graphical output of streamlines and

isotherms for these two solutions exhibits identical plots

when visually inspected. According to the outcome of

this test, although the torque coefficient is quantitatively

sensitive to the grid resolution, the grid with medium

number of grid points, i.e. nr � nz ¼ 81� 81 is consid-
Table 1

Comparison of solutions with different grid resolution (Re ¼ 103, Ri ¼
Grid nr � nz wmax

Coarse 41 · 41 9.96· 10�3

Medium 81 · 81 9.71· 10�3

Fine 161· 161 9.64· 10�3
ered to have sufficient resolution for the present purpose

and medium grid is used in the following computation.

For the medium grid, the minimum and maximum grid

spacing are 4.41· 10�3 and 1.98· 10�2 respectively.

Parametric computation was carried out on a personal

computer with Celeron 2 GHz cpu and the cpu-time per

a typical case was about 3 h.
3. Results and discussion

Numerical solutions are obtained for fluid with

Pr ¼ 1:0, enclosed in a cylindrical container with the

radius to height aspect ratio h ¼ 1:0. The Reynolds

number and the Richardson number are varied in ranges

of 102 6Re6 3� 103 and 06Ri6 1:0. For the parame-

ters covered in the present study, steady solutions are

obtained (cf., e.g. [18]). Of particular interest in this

cylindrical geometry has been the occurrence of vortex

breakdown phenomenon in the past literatures.

According to the experimental visualization of homo-

geneous fluid, symmetric bubble type vortex breakdown

is known to occur for the cylinder aspect ratio hP 1:2
[5]. In the present numerical simulation carried out for a

cylinder with h ¼ 1:0 and Ri ¼ 0, no bubble is created on

the rotation axis in accordance with the past experi-

mental as well as numerical studies. However, close

observation of the streamline plots reveals that although

flow reversal does not occur along the axis in the axial

direction, concave surface is created in stream surfaces

surrounding the axis of rotation when Re exceeds ca.

8� 102 and continues to exist when Re is further in-

creased. A marked change of the meridional flow pat-

tern is observed when Ri is increased to a value of

Ri � Oð10�1Þ where meridional main circulation is

concentrated in radially outer region (0:5 < r < 1) and

flow separation occurs on the bottom stationary disc.

3.1. Velocity and temperature distribution

Let us first examine the effect of Ri on the flow field

by comparing the case with minor influence of buoyancy

and that with substantial buoyancy force. Contour plots

of streamfunction w, vorticity x, azimuthal velocity

component uu and isotherms are shown in (a)–(d) of

Figs. 2–5 for two extreme values of Ri, i.e. Ri ¼ 0 and

1:0. When Ri ¼ 0 and Re is low, the rotating top cover

drags the fluid and stirs swirling motion near the top disc
0, Pr ¼ 1:0 and h ¼ 1:0)

wmin Nu CT

)2.51· 10�7 5.805 11.2

)1.59· 10�7 5.736 11.9

)1.29· 10�7 5.708 12.8



Fig. 2. Contour plots of streamfunction w, azimuthal vorticity component x, azimuthal velocity component uu and isotherms. Contour

values are (a) w ¼ ði=10Þ3wmax; i ¼ 0; . . . ; 10, w ¼ ði=10Þ3wmin; i ¼ 0; . . . ; 10, (b) x ¼ ði=10Þ3xmax; i ¼ 0; . . . ; 10, x ¼ ði=10Þ3xmin;

i ¼ 0; . . . ; 10, (c) uu ¼ ði=10Þ; i ¼ 0; . . . ; 10, and (d) T ¼ ði=20Þ; i ¼ 0; . . . ; 20. Re ¼ 3� 102, Ri ¼ 0, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 3. Similar plots for Re ¼ 2� 103, Ri ¼ 0, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 4. Similar plots for Re ¼ 3� 102, Ri ¼ 1:0, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 5. Similar plots for Re ¼ 2� 103, Ri ¼ 1:0, Pr ¼ 1:0 and h ¼ 1:0.
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owing to the viscous stress as exhibited by the contour

lines of uu in Fig. 2(c). A circulating cell is created in the

meridional plane ðr; zÞ as a result of the dynamic inter-

action between the swirling component and the meridi-

onal components by the action of centrifugal force and
Coriolis force (Fig. 2(a)). Isotherms in Fig. 2(d) exhibit

that although almost equi-spaced contours are seen in

the vicinity of top and bottom walls, a horizontal tem-

perature gradient exists in the bulk of the container.

When Re is high (Fig. 3), thin boundary layers are visible
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in the plots of uu. The vertical contour lines near the axis
are suggesting that the axial component of the vorticity

xz is close to constant whose value is by rough estima-

tion about X=4. This is qualitatively in agreement with

the bulk flow of the Batchelor’s solution for infinite discs

[25,26]. Main circulating cell occupies the whole ðr; zÞ
plane as it was in the low Re flows. It is noticed that the

stream lines run almost parallel to z-axis in the vicinity

of the axis indicating ur � 0, ouz
oz � 0, thus xu � 0 in this

region in high Re flows. Isotherms are more clustered

near the top and bottom boundaries and temperature

gradient in the bulk of the fluid body tends to be radial

rather than vertical.

The effect of buoyancy is distinctively seen in Figs.

4 and 5 with Ri ¼ 1:0. When Re ¼ 3� 102, the swirling

motion is more confined in the vicinity of the upper

rotating wall as seen in Fig. 4(c). Meridional flow

displays upper larger circulating cell and lower smaller

recirculating cell (Fig. 4(a)). In these plots of stream-

function, the values of contours are not equi-spaced so

that care must be taken when interpreting the strength

of these recirculations not to overestimate the strength

of recirculating cells. Isotherms are more horizontal

than it is in Fig. 2(d) and vertical gradient in the

whole container appears to be almost constant. When

Re ¼ 2� 103 (Fig. 5), similar tendency is observed as

in the plots for Re ¼ 3� 102. The azimuthal compo-

nent of the velocity uu exhibits thin boundary layer at

the top wall and the magnitude of uu in lower portion

of the container is virtually null. However, closer

examination reveals that contour lines in the vicinity

of the top disc boundary layer is almost vertical near

the axis (r < 0:3), indicating that fluid layer of con-

siderable depth (approximately 0:8 < z) is rotating

rigidly. Meridional circulation is almost stagnant in

this region. This rigid rotation of the fluid layer is

conspicuous when RiP 0:5. Intense meridional motion

is confined in the upper half (0:5P z), close to the side

wall (0:56 r) region (Fig. 5(a)). Circulating cell is

observed near the top right corner and induced recir-

culating cells are horizontally stretched forming a

horizontally layered structure. In this region near the

top and side walls, the fluid is well mixed and the

temperature is relatively higher than the ambient fluid

at the same height (Fig. 5(d)).

In order to illustrate the influence of buoyancy force

on the vertical velocity distribution in a more clear

manner, velocity components are plotted along a ver-

tical line at r ¼ 0:8 for Ri ¼ 0 and 1.0, Re ¼ 3� 102

and 2· 103 in Fig. 6. In Fig. 6(b), (d) and (f), addi-

tional data is shown for Ri ¼ 3:0. It is noted first that

the magnitude of uu decreases substantially in the

portion z < 0:6 for both low and high Reynolds

number cases as shown in Fig. 6(c) and (d) when Ri is
increased to unity. For the high Re case plotted in Fig.

6(d), uu plot displays thin boundary layer in the
vicinity of top disc, a well mixed layer of fluid with

constant value of uu in upper portion of the container,

0:6 < z < 1, and diminishingly small values in lower

portion z < 0:6. When Ri is further increased to 3.0,

the influence of the disc rotation penetrates smaller

distance from the top boundary. Similar trend is seen

in the plots of ur and uz in Fig. 6(a), (b) and (e), (f). In

all figures shown above, it is observed that the effect of

externally imposed temperature gradient inhibits the

vertical motion and the swirling motion tends to be

confined in shallower depth near the rotating boundary

as Ri is increased.

Temperature distribution plotted in Fig. 7 for the

same values of Re and Ri displays similar trend that is

consistent with the previous velocity profiles. As Ri is
increased to Oð1Þ, temperature over most of the depth

becomes a linear function of z, i.e. T / z, with its incli-

nation approaches toward unity (see Fig. 7(b)) suggest-

ing that the local Nusselt number at top and bottom

discs also approaches toward unity. Above comparison

of flows at Ri ¼ 0 and 1.0 thus discloses the changeover

of convective meridional main circulation to the circu-

lation localized in a shallow layer adjacent to the top

disc, and convective to conductive temperature distri-

bution.

The flow structure at medium values of Ri, i.e.

Ri � Oð10�1Þ is exemplary shown next in Fig. 8 for

Re ¼ 2� 103 and Ri ¼ 7� 10�2. The value of uu be-

comes smaller in the lower part of container (z � 0:2) as
compared with the flow at Ri ¼ 0, however it is inter-

esting to observe that the value of uu is increased in the

portion near the top disc (r � 0:4, z � 0:8). Similar

tendency is more clearly seen in the portion near the top

disc and axis (r < 0:3, z > 0:8) of the plots for Ri ¼ 1:0
in Fig. 5(c). Decreased value of uu in the lower half of

the container is a straightforward consequence of the

action of vertical buoyancy force, though another

interesting observation is that the meridional main cir-

culation tends to be shifted toward radially outward

portion (r > 0:5) of the cylinder, leaving radially inward

portion (r < 0:5) almost stagnant (Fig. 8(a)). This trend

becomes gradually obvious as Ri exceeds ca. 5 · 10�2 and

ReP 103. Although the streamlines are concentrated in

radially outer half of the cylinder, the strength of this

main circulation at Ri ¼ 7� 10�2 still retains substantial

magnitude, as will be shown in Fig. 9. In the lower

portion of the streamlines, a mild concave surface is

seen. Compared with Fig. 5(b) for Ri ¼ 1:0, the contour
plots of x in Fig. 8(b) exhibits smaller (negative) value in

this region. It is plausible that the horizontal tempera-

ture gradient at medium value of Ri contributes in the

production of negative azimuthal vorticity. A separation

bubble is seen to be created on the surface of bottom

disc at r � 0:6. Separation on the bottom disc is ob-

served for the flows with RiP 6� 10�2 and ReP
9� 102.



Fig. 6. Plots of velocity components along a vertical line at r ¼ 0:8. (a) ur for Re ¼ 3� 102, (b) ur for Re ¼ 2� 103, (c) uu for

Re ¼ 3� 102, (d) uu for Re ¼ 2� 103, (e) uz for Re ¼ 3� 102, and (f) uz for Re ¼ 2� 103.
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3.2. Magnitude of meridional streamfunction

Local maximum value of the streamfunction wmax

and location of points on the meridional plane where

w ¼ wmax are then shown in Fig. 9 as a function of Ri
for Re ¼ 102, 3 · 102, 103 and 2· 103. Similar plots for

the minimum of the streamfunction wmin are shown in

Fig. 10. wmax indicates the volumetric flow rate of

meridional main circulation and its location, the center

of circulating cell, wmin the volumetric flow rate of

recirculating cell and its location, the center of recir-
culating cell respectively. In the present computation,

the value of wmax at a fixed value of Ri increases when

102 6Re6 2� 102 and gradually decreases when ReP
3� 102. On the other hand, for all Re cases shown in

Fig. 9(a), wmax is a decreasing function of Ri. The

location of the points where w attains maximum is

shown in Fig. 9(b). For each Re, a point with smallest

value of r and z corresponds to the case of Ri ¼ 0 and

largest value of r and z corresponds to the case of

Ri ¼ 1:0. All the points plotted in the right upper half

of the meridional plane display similar tendency as Ri



Fig. 7. Temperature profile along a vertical line at r ¼ 0:8. (a) Re ¼ 3� 102 and (b) Re ¼ 2� 103.

Fig. 8. Similar plots to Fig. 2 except for Re ¼ 2� 103, Ri ¼ 7� 10�2, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 9. Local maximum value of the streamfunction. (a) wmax versus Ri. (b) Location where w is maximum, plotted on the meridional

plane ðr; zÞ.
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is increased, i.e. the center of the main circulating cell

moves toward the right upper corner at ðr; zÞ ¼ ð1; hÞ.
In these figures, decreased meridional flow rate and

localized meridional circulation in the vicinity of the

top disc as Ri is increased are clearly indicated.

Similar plots for wmin in Fig. 10(a) exhibit that when

Ri is increased, magnitude of wmin is virtually zero for up

to a certain value of the order Ri � Oð10�1Þ and then

increases as Ri. This is indicative that when Ri reaches to
a certain value (Ri ¼ 0:1 in case Re ¼ 4� 102 and

Ri ¼ 0:07 in case Re ¼ 3� 103), flow separation occurs

and this critical value for separation varies as Re is

varied. The magnitude of wmin is still increasing at

Ri ¼ 1:0, however the present computation covers only a

finite range of Ri and therefore if Ri is increased to ex-

tremely large value, both wmax and wmin are considered to

decrease ultimately and diminishes toward zero because

of the strong restriction of vertical motion due to the



Fig. 11. Flow pattern diagram on ðRi;ReÞ plane. Re and Ri for the inset are (a) Re ¼ 200, Ri ¼ 0:1, (b) Re ¼ 700, Ri ¼ 0:1, (c) Re ¼ 500,

Ri ¼ 0:1, (d) Re ¼ 300, Ri ¼ 0:25, (e) Re ¼ 1700, Ri ¼ 0:25, (f) Re ¼ 2000, Ri ¼ 0:25, and (g) Re ¼ 1000, Ri ¼ 0:8.

Fig. 10. Local minimum value of the streamfunction. (a) wmin versus Ri. (b) Location where w is minimum, plotted on the meridional

plane ðr; zÞ.
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Fig. 12. Local Nusselt number Nu at top and bottom discs.

Re ¼ 3� 102, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 13. Local Nusselt number Nu at top and bottom discs.

Re ¼ 2� 103, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 14. Average Nusselt number Nu as functions of Re.
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buoyancy force. The location of wmin as plotted in Fig.

10(b) shows that when Re ¼ 102, the corner bubble

which originally dwells at the bottom right corner grows

its size and finally occupies the lower half of the con-

tainer as Ri is increased. Contrary to the behavior at low

Re, two rows of points for Re ¼ 103 and 2· 103 are

indicating that a recirculating bubble is created on the

bottom boundary and then this bubble grows in size and

migrates toward the side wall as Ri is increased.
3.3. Flow patterns

Flow patterns are classified into several types

according to the arrangement and number of meridional

recirculating cells in Fig. 11. The definition of the types

are explained in the inset of the figure. When Ri is small,

the effect of the buoyancy is negligibly small, single main

circulating cell is developed in the whole meridional

plane with a minor corner separation slightly visible in

the right lower corner between the side wall and the

bottom disc (type a). When Ri is increased to RiPOð1Þ,
the effect of thermal stratification is substantial, hori-

zontally layered pattern emerges with main circulating

cell near the top rotating disc and horizontally stretched

secondary recirculating cells induced (types d–g). In

between these two extreme cases, i.e. Ri � Oð10�1Þ, main

circulation tends to be confined in radially outer portion

(r > 0:5) and several flow patterns are noted in a small

region of ðRi;ReÞ plane, e.g. separation bubble created

on the bottom disc (type b) and corner bubble created

between the axis and the bottom disc (type c) when

ðRi;ReÞ � ð0:1; 500Þ. The influence of Re on the flow

pattern is palpable, however it is restricted to the cases

with Re6 103.

3.4. Nusselt number

Radial distribution of local Nusselt number NuðrÞ at
top and bottom discs is shown in Figs. 12 and 13 for

Re ¼ 3� 102 and 2· 103 respectively. Increased heat

transfer owing to the convective fluid motion is noted by

comparing the plots for low and high Re when Ri ¼ 0.

When Ri is increased to 1:0, profile of Nu exhibits a

marked contrast to the previous plots for Ri ¼ 0. Almost

uniform distribution of Nu suggests the suppression of

vertical fluid motion by the thermal stratification and

thus large portion of heat transfer between the top and

bottom boundaries is carried out by the conduction.

The average Nusselt number Nu is then shown first

as a function of Re in Fig. 14 and as a function of Ri in



Fig. 16. Contour plots of average Nusselt number Nu on the

parameter plane ðRi;ReÞ.

Fig. 15. Average Nusselt number Nu as functions of Ri.

Table 2

Correlation of average Nusselt number Nu with the Reynolds number Re: Nu ¼ CRek

Ri 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

k 0.643 0.636 0.624 0.607 0.586 0.560 0.532 0.504 0.447

C 0.0675 0.0684 0.0709 0.0749 0.0802 0.0881 0.0981 0.110 0.151

Ri 0.09 0.1 0.2 0.25 0.3 0.4 0.5 1.0

k 0.449 0.426 0.295 0.263 0.236 0.201 0.180 0.112

C 0.139 0.154 0.274 0.314 0.354 0.409 0.444 0.601

Re is varied in a range 102 6Re6 3� 103, Pr ¼ 1:0 and h ¼ 1:0.
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Fig. 15. Logarithmic plots in Fig. 14 exhibits fair degree

of linearity between logRe and logNu. The inclination of

these lines decreases as Ri is increased. Correlation

coefficients calculated for various Ri are given in Table 2.

Plots in Fig. 15 clearly exhibits a tendency that as Ri
is increased, Nu gradually approaches to the limiting

value of 1.0. Precise nature of the function which gives

Nu as a function of Ri is unknown, however after some

calculations we find that a relationship NuðRiÞ ¼
½NuðRi ¼ 0Þ þ Ri2�=½1þ Ri2� turned out to be a simple

approximation of the computed curves.

Finally, complete information about Nu is given in

Fig. 16 in which contour plots of Nu is constructed on

the parameter plane ðRi;ReÞ.

3.5. Torque coefficient

Of particular interest to engineering applications is

the torque coefficient CT necessary to sustain the top disc

rotation. The torque coefficient in the present study is

defined as

CT ¼ 1

p

Z 1

0

ouu
oz

����
z¼h

2pr2 dr: ð15Þ

According to the present numerical computation, CT

is an increasing function of Re (Fig. 17). The torque

obtained for the enclosed fluid with Ri ¼ 0 in the present

study is substantially larger than that obtained by the
similarity solution for one side of the disc placed in fluid

of infinite expanse [25,26]. In the present case of fluid

confined in a finite container, the vorticity component

xu is not restricted to a thin layer and this distributed

vorticity should contribute to an increased torque value

through dynamic interaction of three components of

the vorticity equation. When ReP 103, the following



Fig. 17. Torque coefficient CT as a function of Re. Ri ¼ 0 and

1:0, Pr ¼ 1:0 and h ¼ 1:0.

Fig. 18. Torque coefficient CT as a function of Ri. Re ¼ 3� 102

and 2� 103, Pr ¼ 1:0 and h ¼ 1:0.

2766 R. Iwatsu / International Journal of Heat and Mass Transfer 47 (2004) 2755–2767
equations are found to hold approximately: CTðRi ¼
0Þ / Re0:35 and CTðRi ¼ 1:0Þ / Re0:32. The value of CT

slightly decreases when Ri is increased over the parameter

range covered in the present computation (Fig. 18).

Technical inference of the present result might be that it

may be possible to control the magnitude of torque by

appropriately imposing a vertical thermal boundary

condition on to engineering devices which enclose

rotating fluid as working fluid within the container.
4. Conclusions

The effect of stable temperature gradient on swirling

flows confined in a cylindrical container is numerically

investigated for wide ranges of governing parameters Re
and Ri at fixed values of Pr � 1:0 and h � 1:0. When Ri
is increased to Oð1Þ, horizontally layered structure

emerges. Plotted isotherms exhibit variation of the

convection dominated solution to the conduction domi-

nated solution of linear equations as Ri is increased.

Interesting findings are for the intermediate values of Ri,
i.e. Ri � Oð10�1Þ, meridional circulation is concentrated

in radially outer portion of the cylinder (r > 0:5) and

flow separation occurs on the bottom boundary. Several

flow patterns are developed depending on the values of

Ri and Re, e.g. separation bubble on the bottom disc,

corner bubble at the corner between the axis and the

bottom disc, and corner separation at the corner be-
tween the bottom disc and sidewall. Finally the average

Nusselt number Nu and the torque coefficient CT are

computed as functions of Re and Ri. Above numerical

results are open for experimental validation and cross

comparison of numerical and experimental output

should deepen the understanding of the fluid flow under

consideration.
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